A Privacy-Preserving Tool for Assigning Census Tract
Characteristics to Participant Data Using Non-PHI
Feature Matching

Atharva Beesen

December 15, 2025

Abstract

Linking participant-level datasets to neighborhood characteristics is important for social
science research. Many studies rely on census-tract information to capture local socioeconomic
conditions, resources, and risks. However, conventional linkage methods depend on protected
health information (PHI), such as residential addresses or geocoded coordinates, which creates
privacy risks and barriers to Institutional Review Board (IRB) approval, data sharing, and
reproducibility.

To address these issues, we developed a computational tool that lets researchers attach
census-tract characteristics to participant records without using PHI. The tool compares non-
identifying neighborhood features that already exist in both the participant file and an American
Community Survey (ACS)-like tract file, and uses a relative-tolerance rule to find the tract
whose characteristics best match each participant. It returns a matched file with tract-level
attributes and hashed tract aliases, plus an unmatched file for participants who cannot be linked
confidently. This paper describes the motivation, design, implementation, and simulation-
based validation of the tool, and outlines how it can be used in future research. The package is

openly available, easy to install, and usable through a single Python function call.

1 Introduction

Neighborhood context is closely tied to health. Countless studies have shown that community-level
neighborhood features such as transit access, frequent social interaction, walkability, and green
spaces are heavily linked to mental health, physical health, and well-being [2, [1]. Researchers
often use census-tract measures such as income, poverty, education, and housing to capture these
neighborhood conditions and study how they relate to individual outcomes.

In most projects, linking participants to census tracts requires address-level data. Analysts
geocode home addresses or postal codes to obtain tract codes and then merge in ACS or census
variables. Addresses and geocodes are treated as PHI under the Health Insurance Portability and
Accountability Act (HIPAA): under the HIPAA Safe Harbor de-identification standard, “all geo-
graphic subdivisions smaller than a State, including street address and their equivalent geocodes”
constitute identifiable information [S]]. Large cohort studies report that geocoding itself can be tech-
nically demanding and time-consuming, especially when working with imperfect address data or
very large samples [3]. These requirements can block secondary analysts from using neighborhood
data, slow collaboration across institutions, and limit the ability to share or replicate analyses.

At the same time, many datasets already include tract-level characteristics that were attached
upstream, for example by a health system or survey organization. Variables such as median
household income or percent below poverty are not considered PHI. In practice, combinations of
these variables can nearly identify a tract within a given region, even if the actual address or tract
ID is never shared. This creates an opportunity: instead of starting from addresses, we can try to
recover the most likely tract using only non-PHI features that are already present.

The tool described in this paper takes that approach. It accepts an ACS-like file (meaning any
tract-level dataset with numeric socioeconomic indicators structured similarly to ACS summary
tables) with tract-level features and a participant file with overlapping neighborhood variables. For
each participant, it finds the tract whose characteristics best match the participant’s values, using a
simple relative-tolerance rule: thatis, each tract is evaluated based on whether the relative difference

between tract and participant values stays below a preset threshold across all shared features. When

a tract passes this tolerance test—a multidimensional check requiring all features to lie within the
allowed preset percentage difference threshold—the tool transfers the chosen tract-level variable
(the “new feature”) to the participant and records a hashed tract alias instead of the raw census
geographic identifier (GEOID). When no tract is a good match, the participant is placed in an
unmatched file.

This design avoids direct use of PHI and does not require geocoding. It also aligns with broader
work on protecting the confidentiality of census and administrative data, where new methods such
as differential privacy are being introduced to balance privacy and data quality [4]. Here, instead of
modifying the data with noise, we reduce risk by never handling addresses or true tract identifiers
in the analyst-facing workflow.

In the sections that follow, we describe the tool’s methods and software design, present a
simulation study that tests its behavior under controlled conditions, and discuss how it might be

used in real research settings, along with key limitations and possible extensions.

2 Methods

2.1 Public Availability and Installation

The tool is publicly accessible at:
https://github.com/SustainableUrbanSystemsLab/NeighborhoodMatcher

The package can be installed directly via:

pip install git+https://github.com/SustainableUrbanSystemsLab/

- NeighborhoodMatcher.git

Once installed, the primary function is imported with:

from acs_matcher import match_participants

This design allows any researcher with basic Python experience to use the tool without dealing with

packaging details.

2.2 HIPAA Compliance Considerations

Because the tool never ingests, stores, or processes PHI such as addresses or geocodes, its workflow
is compatible with HIPA A regulations. All matching is performed using non-identifying tract-level
variables already present in the dataset, and GEOIDs are replaced with non-reversible hashed
aliases. However, users must ensure they do not include address-like variables among the matching

features; misconfiguration could reduce the intended privacy protections.

2.3 Required Inputs

The function operates on two comma-separated values (CSV) files:

* ACS-like file containing:

— ageoid column,
— one or more numeric tract-level features,

— anew_feature column representing the attribute to be appended to participants.
 Participant file containing:

— an id column,
— any subset of the ACS-like feature columns.
Column order does not matter, but column names do: overlapping features are identified purely by

matching column names after trimming whitespace.

Table |1|illustrates an example ACS input.

Table 1: Table 1: ACS input example.

geoid feature_1 feature 2 feature_.3 new_feature

100000 0.10 100 0.50 1.0
100001 0.20 200 0.60 2.0
100002 0.30 300 0.70 3.0
100003 0.40 400 0.80 4.0
100004 0.50 500 0.90 5.0

Table [2| shows an example participant input.

Table 2: Table 2: Participant input example.

id feature_1 feature 2 feature_3

0 0.10 100 0.50
1 0.21 199 0.61
2 029 301 0.71
3 040 400 0.81
4 999 999 9.99

These inputs were constructed so that participants 0—3 match directly to the first four tracts, while

participant 4 is too different to match any tract.

2.4 Overview of Algorithmic Design (with Code Examples)

The matching algorithm is designed to identify, for each participant, the census tract whose char-
acteristics most closely resemble the participant’s available neighborhood features. To make the
logic transparent, each major step is explained briefly and paired with a minimal code snippet from

the implementation.

2.4.1 Loading and Normalizing Input Data

Both CSVs are initially loaded as strings to avoid unintended coercion. Column names are stripped

and standardized.

acs_df_raw = pd.read_csv(acs_csv_path, dtype=str)

user_df_raw = pd.read_csv(participant_csv_path, dtype=str)
acs_df_raw.columns = [c.strip() for c in acs_df_raw.columns]

user_df_raw.columns = [c.strip() for c in user_df_raw.columns]

This step keeps early parsing robust and avoids hidden type errors.

2.4.2 Identifying Overlapping Feature Columns

The tool uses only the feature columns that appear in both datasets. These shared columns form

the basis of the matching.

user_ feats = [c for ¢ in user df raw.columns if c !'= "id"]
acs_feats = [c for ¢ in acs_df_raw.columns

if ¢ not in ("geoid", "new_feature")]
overlap = [c for c in user_feats if c in acs_feats]

Participants can have a subset of the "ACS” features (if there are other columns, these will be

ignored); only the overlapping features are used for comparisons.

2.4.3 Converting Features to Numeric

Because ACS and participant data may include commas, symbols, or mixed formats, a flexible

numeric parser is used.

def _to_numeric_series(s):
if pd.api.types.is_numeric_dtype(s) :
return pd.to_numeric(s, errors="coerce")
fallback regex extraction

x = str(s).replace(",", "")

m _num_re.search (x)

return float (m.group(0)) if m else np.nan

This converts messy real-world values into usable numeric columns while keeping the original

strings for output.

2.4.4 Computing Relative Differences

For each participant, the algorithm measures how far each tract is from that participant on every
overlapping feature, using a relative difference. For a given feature, with tract value a and participant
value u, we define:

rel diff = — 14—l

max ([al, u]. &)

uv = row_cmpl[overlap].to_numpy (dtype=float) [valid_ cols]

av = acs_vals[:, valid_cols]

denom = np.maximum(np.maximum(np.abs(av), np.abs(uv)), eps)
rel = np.abs(av - uv) / denom

2.4.5 Applying the Tolerance Rule

A tract is considered a match only if all overlapping features are within the relative tolerance.

within = (rel <= rtol) .all(axis=1)

This rule is conservative: if any feature is too different, the tract is not considered a candidate.

2.4.6 Selecting the Best Match

If multiple tracts pass the tolerance test, the algorithm chooses the one with the smallest average

relative error.

cand_rel = rel[within]

best_idx np.argmin (cand_rel.mean (axis=1))

best_global = np.flatnonzero(within) [best_idx]

This favors tracts whose overall feature profile is closest to the participant.

2.4.7 Attaching Tract Information with Hashed Identifiers

To protect PHI, the raw geoid is replaced with a hashed alias. Researchers never see tract

identifiers, and the hashing is one-way.

def _alias_for_geoid(qg):
h = hashlib.shal (g.encode ("utf-8")) .hexdigest () [:8]

return f"alias_{h}"

The mapping from GEOID to alias is kept internal and does not appear in the output files.

2.4.8 Exporting Matched and Unmatched Participants

Finally, the tool writes two outputs next to the input participant file.

matched_df.to_csv(base + "_matched.csv", index=False)

unmatched_df.to_csv(base + "_unmatched.csv", index=False)

This separation makes it easy to see which participants were confidently matched and which were

not.

2.5 Privacy Mechanism

As a further safeguard, the tool outputs only hashed versions of tract identifiers:

import hashlib

def alias_for_geoid(qg) :

return "alias_" + hashlib.shal (g.encode()) .hexdigest () [:8]

This creates a non-reversible mapping, so analysts can group participants by tract alias without
learning the underlying GEOID. If needed, a data steward could maintain a private crosswalk

between GEOIDs and aliases, but this file is not produced or shared by default.

2.6 Expected Output Structure
The function match participants_to_new_feature always produces two files:

1. amatched output file containing participants who were paired with a census tract within the

specified tolerance, and

2. an unmatched output file containing participants for whom no tract met the tolerance

criteria.
Both outputs closely mirror the participant input schema. The matched file appends two columns:
* new_feature — the tract-level variable transferred from the ACS file, and

* tract_alias — a Secure Hash Algorithm 1 (SHA-1)-based hashed identifier derived

from the tract’s GEOID.

This structure keeps the data easy to use and safe to share.
Example: Matched Output

Table 3: Table 3: Illustrative matched output structure.

id feature_1 feature 2 feature.3 new_feature tract_alias

0 0.10 100 0.50 1.0 alias_a2f4c9d1
1 021 199 0.61 2.0 alias_b771e8c3
2 029 301 0.71 3.0 alias_c118be29
3 040 400 0.81 4.0 alias_d9efl1aa

The matched output provides all original participant columns plus the neighborhood feature being
transferred. The output has the first four participants in Table[2]— we mentioned earlier that we only

expect these to have a matching tract.

Example: Unmatched Output
The unmatched file contains only participant columns, because no tract matched within the tolerance

threshold.

Table 4: Table 4: Illustrative unmatched output structure.

id feature_1 feature 2 feature_ 3

4 999 999 9.99

This unmatched row corresponds to the fifth participant in Table [2| whose features fall far outside
the ACS feature ranges. In realistic applications, we do not expect 100% of participants to match;
the match rate depends on how many tract characteristics are available and how tight the chosen
tolerance is. Unmatched cases are treated as a safety valve rather than an error, and they signal

records for which the available features do not support a confident tract assignment.

3 Results

To evaluate performance, we ran a controlled simulation that tested two main properties: (1)
whether the algorithm correctly identifies census tracts when participant features closely match
tract features, and (2) whether it leaves participants unmatched when their features do not resemble
any tract within the chosen tolerance. This setup lets us see how the tool behaves when used only
with non-PHI neighborhood characteristics.

All simulation code and synthetic datasets are available at:
https://github.com/SustainableUrbanSystemsLab/NeighborhoodMatcher

in the testing folder.

3.1 Simulation Inputs

We generated an ACS-like dataset with 100 synthetic census tracts and a participant dataset with

100 participants. For 95 participants, feature values were constructed so that each participant

10

corresponded closely (within 0.5% relative tolerance) to exactly one tract. For the remaining 5
participants, features were perturbed far beyond any realistic tolerance threshold so that no match
should be found. Under this design, a correct implementation should return exactly 95 matched
and 5 unmatched participants.

Tables[5)and [6]show the first ten rows of each dataset. These screenshots were generated directly

in Python and saved as Portable Network Graphics (PNG) files.

Table 5: Table 5: ACS-like simulation input (top 10 rows).

geoid feature_l feature.2 feature.3 new_feature
100000 0.4371 21885.75 0.6494 0.5997575
100001 0.9556 58184.62 0.2589 1.1243712
100002 0.7588 38861.36 0.3131 0.8462886
100003 0.6388 50514.24 0.8290 1.0317924
100004 0.2404 74453.99 0.6245 1.0208649
100005 0.2404 34957.53 0.2064 0.5213753
100006 0.1523 44622.98 0.2710 0.5901298
100007 0.8796 65333.07 0.6645 1.2592557
100008 0.6410 33727.89 0.2035 0.7086539
100009 0.7373 24618.79 0.3126 0.6929879

Table 6: Table 6: Participant-level simulation input (top 10 rows).

id

feature_1

feature_2

feature_3

O 01NN kW= O

0.437060808016065
0.955605992497185
0.758806166786056
0.638817558044215
0.240410870471325
0.240422878967981
0.152300496508609
0.879568854502720
0.641037842870169
0.737266206923771

21887.63548942777
58188.79082195383
38860.80812226713
50516.77451226550
74457.78034652035
34954.75523814771
44626.57262206075
65333.13863072336
33730.09214430131
24617.90396778348

0.6493942406990518
0.2589062204659142
0.3130860596096783
0.8289482904882822
0.6244954659307771
0.2063939463799729
0.2710045341612624
0.6644438809322527
0.2035193078686720
0.3126303978957448

3.2 Running the Matching Tool

We first installed the package:

pip install git+https://github.com/SustainableUrbanSystemsLab/

— NeighborhoodMatcher.git

11

and then imported the tool and applied the matching function to the synthetic inputs:

from acs_matcher import match_participants

matched_path, unmatched_path = match_participants(
acs_csv_path="acs_sim_for_report_acs.csv",
participant_csv_path="participants_sim_for_report.csv",

rtol=0.005

Because the simulation was fully deterministic, we expected exactly 95 matched participants and

exactly 5 unmatched participants.

3.3 Simulation Outputs

Tables [/| and [8| show the first ten rows of the matched and unmatched output files produced by the

tool.

The outputs illustrate two key behaviors:

* Correct matches: All 95 participants that should match were assigned tract aliases linked

to the correct synthetic tracts.

* Correct non-matches: All 5 deliberately unmatchable participants were placed in the un-

matched file, indicating that the algorithm did not force an arbitrary match.

12

Table 7: Table 7: Matched output (top 10 rows).

id feature_1 feature_2 feature_.3 new_feature tract_alias
0 0.437060808016065 21887.63548942777 0.6493942406990518 0.5997575 alias_409e¢9519
1 0.955605992497185 58188.79082195383 0.2589062204659142 1.1243712 alias_66eafce8
2 0.758806166786056 38860.80812226713 0.3130860596096783 0.8462886 alias_1748b719
3 0.638817558044215 50516.77451226550 0.8289482904882822 1.0317924 alias_f21d1e28
4 0.240410870471325 74457.78034652035 0.6244954659307771 1.0208649 alias_Oc1516d4
5 0.240422878967981 34954.75523814771 0.2063939463799729 0.5213753 alias_b4db53fd
6 0.152300496508609 44626.57262206075 0.2710045341612624 0.5901298 alias_44cd9fad
7 0.879568854502720 65333.13863072336 0.6644438809322527 1.2592557 alias_2c81c96f
8 0.641037842870169 33730.09214430131 0.2035193078686719 0.7086539 alias_84d97444
9 0.737266206923771 24617.90396778348 0.3126303978957448 0.6929879 alias_89fd7010

Table 8: Table 8: Unmatched output (top 10 rows).

id

feature_1

feature_2

feature_3

95
96
97
98
99

6.20072809389097
5.37931664054332
5.64439860955325
5.64022919478886
5.75951346756147

213882.7172649411
264087.4744803215
218188.0084399145
234566.7283323863
289678.8409906012

7.369808201314362
8.337788692605136
5.861599356008149
5.961445094043354
5.204343081332395

3.4 Simulation Summary

Table@] summarizes the main performance metrics. As intended, the tool returned 95 matched par-

ticipants and 5 unmatched participants. For the matched participants, the transferred new_feature

values were recovered almost exactly, with numerical differences only at machine precision.

Table 9: Table 9: Simulation summary for 100 synthetic participants.

Metric Value
Relative tolerance (rtol) 0.005
Total participants 100
Matched participants 95
Unmatched participants 5
Percent matched 95%
Percent unmatched 5%
Correct alias assignment 100%
Mean abs. relative error (new_feature) ~ 10716
Median abs. relative error (new_feature) =~ 10716

13

3.5 Interpretation

The simulation shows that the tool behaves as designed. When participant features align closely
with those of a tract, the algorithm finds the correct match and transfers tract-level attributes
with negligible numerical error. When participant features fall far outside the range of all tracts,
the algorithm appropriately leaves those participants unmatched. This behavior is important in
practice: it means that analysts can trust matches that pass the tolerance rule, while clearly seeing

which records were not suitable for linkage.

4 Discussion

This tool offers a simple way to link participant-level data to census-tract characteristics without
working directly with addresses or geocodes. It uses tract-level features that many datasets already
contain, and relies on a transparent matching rule based on relative differences. The output keeps
the familiar structure of the original participant file, adds tract-level variables of interest, and
uses hashed tract aliases instead of true GEOIDs. In simulation, the tool successfully recovered
the correct tract-level values for all matchable participants and correctly identified all intentionally
unmatchable cases. This demonstrates that the method behaves reliably when appropriate tract-level
features are available and the tolerance rule is well calibrated.

Methodologically, the tool sits between traditional geocoding and more recent privacy tech-
niques. On one side, geocoding workflows have long been used to add neighborhood context to
health data, but they depend on PHI and can be difficult to scale and manage securely [3]. On
the other side, differential privacy and related methods add noise to protect confidentiality when
publishing statistics from census or administrative data [4]]. Our approach takes a different path:
it avoids PHI altogether in the analyst-facing workflow and instead works only with tract-level
summary variables that are already present in the dataset, never creating or exposing new row-level
geographic identifiers.

The tool also has clear limitations. Its success depends on the quality and variety of tract-

14

level features available in both files. In areas where many tracts look very similar on the chosen
variables, the algorithm may either leave more participants unmatched or assign matches that are
statistically reasonable but not unique; both situations should be rare if the tolerance level is kept
at a low number (it is automatically set to 0.5%) and the dataset does not contain essentially
identical tracts. Additionally, the current implementation handles only numeric features and uses
a fixed tolerance parameter. It treats each participant independently and does not calculate explicit
measures of uncertainty about tract assignment. Computationally, runtime grows with the number
of participants and tracts; this is acceptable for typical study sizes but could become slow for very
large, nationwide datasets without additional optimization.

There are also practical risks if the tool is used incorrectly. If a user accidentally includes
address-like variables among the matching features, or if tract aliases are later linked back to
GEOIDs and merged with other sensitive information, some privacy benefits would be reduced.
These risks can be limited through clear documentation, careful selection of features, and organi-
zational policies that keep any GEOID-to-alias crosswalk separate and restricted.

Future work could extend the tool in several ways. One direction is to support categorical
and count variables and allow different weights for each feature. Another is to return multiple
candidate tracts with similarity scores, giving analysts a sense of uncertainty in ambiguous cases.
Finally, applications to real-world cohorts could compare non-PHI matching against traditional
address-based linkage, measuring how often the assignments agree and how any discrepancies

affect downstream estimates of neighborhood effects on health.

5 Conclusion

We developed and tested an open-source Python tool that links participant-level data to census-tract
characteristics using only non-PHI neighborhood features. By matching on overlapping tract-level
variables rather than addresses or geocodes, the tool offers a practical option for researchers who

cannot access PHI but still want to study the role of neighborhood context.

15

The tool is easy to install, requires only two CSV inputs, and returns matched and unmatched
outputs that are straightforward to interpret and safe to share. A simple simulation study shows
that the algorithm can achieve high matching accuracy while correctly flagging participants whose
features do not align with any tract. In settings where direct geocoding is not feasible, this approach
can help extend neighborhood-effects research and support more nuanced analyses of how place

shapes health, without expanding the footprint of sensitive identifying information.

6 References

References

[1] H. Cohen-Cline, E. Turkheimer, and G. E. Duncan. Access to green space, physical activity and
mental health: a twin study. Journal of Epidemiology and Community Health, 69(6):523-529,
2015.

[2] L.Ma,J. L. Kent, and C. Mulley. Transport disadvantage, social exclusion, and subjective well-
being: The role of the neighborhood environment—evidence from sydney, australia. Journal

of Transport and Land Use, 11(1):31-47, 2018.

[3] J. A. McElroy, P. L. Remington, A. Trentham-Dietz, S. A. Robert, and P. A. Newcomb.
Geocoding addresses from a large population-based study: lessons learned. Epidemiology,

14(4):399-407, 2003.

[4] S. Ruggles, C. Fitch, D. Magnuson, and J. Schroeder. Differential privacy and census data:
Implications for social and economic research. AEA Papers and Proceedings, 109:403-408,

2019.

[5] U.S. Department of Health and Human Services. 45 c.f.r. §164.514 — other requirements
relating to uses and disclosures of protected health information. Electronic Code of Federal

Regulations, 2023.

16

	Introduction
	Methods
	Public Availability and Installation
	HIPAA Compliance Considerations
	Required Inputs
	Overview of Algorithmic Design (with Code Examples)
	Loading and Normalizing Input Data
	Identifying Overlapping Feature Columns
	Converting Features to Numeric
	Computing Relative Differences
	Applying the Tolerance Rule
	Selecting the Best Match
	Attaching Tract Information with Hashed Identifiers
	Exporting Matched and Unmatched Participants

	Privacy Mechanism
	Expected Output Structure

	Results
	Simulation Inputs
	Running the Matching Tool
	Simulation Outputs
	Simulation Summary
	Interpretation

	Discussion
	Conclusion
	References

